Minimal Surfaces And Functions Of Bounded Variation (Monographs In Mathematics)

$152.38 New In stock Publisher: Birkhäuser
SKU: SONG0817631534
ISBN : 9780817631536
Availability: Only 5 Left In-stock.


Domestic Shipping: $3.99

Internation Shipping (Except United states): $16
Condition :

Shipping & Tax will be calculated at Checkout.
Estimated delivery time 7-14 days.
International delivery time 2 to 4 weeks.

   - OR -   

Minimal Surfaces and Functions of Bounded Variation (Monographs in Mathematics)

The problem of finding minimal surfaces, i. e. of finding the surface of least area among those bounded by a given curve, was one of the first considered after the foundation of the calculus of variations, and is one which received a satis­ factory solution only in recent years. Called the problem of Plateau, after the blind physicist who did beautiful experiments with soap films and bubbles, it has resisted the efforts of many mathematicians for more than a century. It was only in the thirties that a solution was given to the problem of Plateau in 3-dimensional Euclidean space, with the papers of Douglas [DJ] and Rado [R T1, 2]. The methods of Douglas and Rado were developed and extended in 3-dimensions by several authors, but none of the results was shown to hold even for minimal hypersurfaces in higher dimension, let alone surfaces of higher dimension and codimension. It was not until thirty years later that the problem of Plateau was successfully attacked in its full generality, by several authors using measure-theoretic methods; in particular see De Giorgi [DG1, 2, 4, 5], Reifenberg [RE], Federer and Fleming [FF] and Almgren [AF1, 2]. Federer and Fleming defined a k-dimensional surface in IR" as a k-current, i. e. a continuous linear functional on k-forms. Their method is treated in full detail in the splendid book of Federer [FH 1].

Specification of Minimal Surfaces and Functions of Bounded Variation (Monographs in Mathematics)

Publication Year1984
Height6.1 inch.
Length0.58 inch.
Width9.25 inch.
Weight1.03 pounds.

Write a review

Your Name:

Your Email:

Your Review:

Note: HTML is not translated!

Rating: Bad           Good

Enter the code in the box below: