A Mathematical Theory of Arguments for Statistical Evidence (Contributions to Statistics),Used
A Mathematical Theory of Arguments for Statistical Evidence (Contributions to Statistics),Used

A Mathematical Theory of Arguments for Statistical Evidence (Contributions to Statistics),Used

In Stock
SKU: DADAX3790815276
Brand: Physica
Sale price$70.81 Regular price$101.16
Save $30.35
Quantity
Add to wishlist
Add to compare

Processing time: 1-3 days

US Orders Ships in: 3-5 days

International Orders Ships in: 8-12 days

Return Policy: 15-days return on defective items

Payment Option
Payment Methods

Help

If you have any questions, you are always welcome to contact us. We'll get back to you as soon as possible, withing 24 hours on weekdays.

Customer service

All questions about your order, return and delivery must be sent to our customer service team by e-mail at yourstore@yourdomain.com

Sale & Press

If you are interested in selling our products, need more information about our brand or wish to make a collaboration, please contact us at press@yourdomain.com

The subject of this book is the reasoning under uncertainty based on sta tistical evidence, where the word reasoning is taken to mean searching for arguments in favor or against particular hypotheses of interest. The kind of reasoning we are using is composed of two aspects. The first one is inspired from classical reasoning in formal logic, where deductions are made from a knowledge base of observed facts and formulas representing the domain spe cific knowledge. In this book, the facts are the statistical observations and the general knowledge is represented by an instance of a special kind of sta tistical models called functional models. The second aspect deals with the uncertainty under which the formal reasoning takes place. For this aspect, the theory of hints [27] is the appropriate tool. Basically, we assume that some uncertain perturbation takes a specific value and then logically eval uate the consequences of this assumption. The original uncertainty about the perturbation is then transferred to the consequences of the assumption. This kind of reasoning is called assumptionbased reasoning. Before going into more details about the content of this book, it might be interesting to look briefly at the roots and origins of assumptionbased reasoning in the statistical context. In 1930, R. A. Fisher [17] defined the notion of fiducial distribution as the result of a new form of argument, as opposed to the result of the older Bayesian argument.

⚠️ WARNING (California Proposition 65):

This product may contain chemicals known to the State of California to cause cancer, birth defects, or other reproductive harm.

For more information, please visit www.P65Warnings.ca.gov.

Recently Viewed