Algorithms For Random Generation And Counting: A Markov Chain Approach (Progress In Theoretical Computer Science),Used

Algorithms For Random Generation And Counting: A Markov Chain Approach (Progress In Theoretical Computer Science),Used

SKU: SONG0817636587 In Stock
Sale price$18.25 Regular price$26.07
Save $7.82
Quantity
Add to wishlist
Add to compare
Shipping & Tax will be calculated at Checkout.
Delivery time: 3-5 business days (USA)
Delivery time: 8-12 business days (International)
15 days return policy
Payment Options

Help

If you have any questions, you are always welcome to contact us. We'll get back to you as soon as possible, withing 24 hours on weekdays.

Customer service

All questions about your order, return and delivery must be sent to our customer service team by e-mail at yourstore@yourdomain.com

Sale & Press

If you are interested in selling our products, need more information about our brand or wish to make a collaboration, please contact us at press@yourdomain.com

Customer Reviews

Be the first to write a review
0%
(0)
0%
(0)
0%
(0)
0%
(0)
0%
(0)

This monograph is a slightly revised version of my PhD thesis [86], com pleted in the Department of Computer Science at the University of Edin burgh in June 1988, with an additional chapter summarising more recent developments. Some of the material has appeared in the form of papers [50,88]. The underlying theme of the monograph is the study of two classical problems: counting the elements of a finite set of combinatorial structures, and generating them uniformly at random. In their exact form, these prob lems appear to be intractable for many important structures, so interest has focused on finding efficient randomised algorithms that solve them ap proxim~ly, with a small probability of error. For most natural structures the two problems are intimately connected at this level of approximation, so it is natural to study them together. At the heart of the monograph is a single algorithmic paradigm: sim ulate a Markov chain whose states are combinatorial structures and which converges to a known probability distribution over them. This technique has applications not only in combinatorial counting and generation, but also in several other areas such as statistical physics and combinatorial optimi sation. The efficiency of the technique in any application depends crucially on the rate of convergence of the Markov chain.

Shipping & Returns

Shipping
We ship your order within 2–3 business days for USA deliveries and 5–8 business days for international shipments. Once your package has been dispatched from our warehouse, you'll receive an email confirmation with a tracking number, allowing you to track the status of your delivery.

Returns
To facilitate a smooth return process, a Return Authorization (RA) Number is required for all returns. Returns without a valid RA number will be declined and may incur additional fees. You can request an RA number within 15 days of the original delivery date. For more details, please refer to our Return & Refund Policy page.

Shipping & Returns

Shipping
We ship your order within 2–3 business days for USA deliveries and 5–8 business days for international shipments. Once your package has been dispatched from our warehouse, you'll receive an email confirmation with a tracking number, allowing you to track the status of your delivery.

Returns
To facilitate a smooth return process, a Return Authorization (RA) Number is required for all returns. Returns without a valid RA number will be declined and may incur additional fees. You can request an RA number within 15 days of the original delivery date. For more details, please refer to our Return & Refund Policy page.

Warranty

We provide a 2-year limited warranty, from the date of purchase for all our products.

If you believe you have received a defective product, or are experiencing any problems with your product, please contact us.

This warranty strictly does not cover damages that arose from negligence, misuse, wear and tear, or not in accordance with product instructions (dropping the product, etc.).

Warranty

We provide a 2-year limited warranty, from the date of purchase for all our products.

If you believe you have received a defective product, or are experiencing any problems with your product, please contact us.

This warranty strictly does not cover damages that arose from negligence, misuse, wear and tear, or not in accordance with product instructions (dropping the product, etc.).

Secure Payment

Your payment information is processed securely. We do not store credit card details nor have access to your credit card information.

We accept payments with :
Visa, MasterCard, American Express, Paypal, Shopify Payments, Shop Pay and more.

Secure Payment

Your payment information is processed securely. We do not store credit card details nor have access to your credit card information.

We accept payments with :
Visa, MasterCard, American Express, Paypal, Shopify Payments, Shop Pay and more.

Related Products

You may also like