Boundary Integral Equation Analyses Of Singular, Potential, And Biharmonic Problems (Lecture Notes In Engineering, 7),Used

Boundary Integral Equation Analyses Of Singular, Potential, And Biharmonic Problems (Lecture Notes In Engineering, 7),Used

Out of Stock
SKU: SONG3540136460
Brand: Springer
Sale price$43.28 Regular price$61.83
Sold out Save $18.55
Quantity
Add to wishlist
Add to compare

Processing time: 1-3 days

US Orders Ships in: 3-5 days

International Orders Ships in: 8-12 days

Return Policy: 15-days return on defective items

Payment Option
Payment Methods

Help

If you have any questions, you are always welcome to contact us. We'll get back to you as soon as possible, withing 24 hours on weekdays.

Customer service

All questions about your order, return and delivery must be sent to our customer service team by e-mail at yourstore@yourdomain.com

Sale & Press

If you are interested in selling our products, need more information about our brand or wish to make a collaboration, please contact us at press@yourdomain.com

Harmonic and biharmonic boundary value problems (BVP) arising in physical situations in fluid mechanics are, in general, intractable by analytic techniques. In the last decade there has been a rapid increase in the application of integral equation techniques for the numerical solution of such problems [1,2,3]. One such method is the boundary integral equation method (BIE) which is based on Green's Formula [4] and enables one to reformulate certain BVP as integral equations. The reformulation has the effect of reducing the dimension of the problem by one. Because discretisation occurs only on the boundary in the BIE the system of equations generated by a BIE is considerably smaller than that generated by an equivalent finite difference (FD) or finite element (FE) approximation [5]. Application of the BIE in the field of fluid mechanics has in the past been limited almost entirely to the solution of harmonic problems concerning potential flows around selected geometries [3,6,7]. Little work seems to have been done on direct integral equation solution of viscous flow problems. Coleman [8] solves the biharmonic equation describing slow flow between two semi infinite parallel plates using a complex variable approach but does not consider the effects of singularities arising in the solution domain. Since the vorticity at any singularity becomes unbounded then the methods presented in [8] cannot achieve accurate results throughout the entire flow field.

⚠️ WARNING (California Proposition 65):

This product may contain chemicals known to the State of California to cause cancer, birth defects, or other reproductive harm.

For more information, please visit www.P65Warnings.ca.gov.

Recently Viewed