Multivariate Bayesian Statistics: Models for Source Separation and Signal Unmixing,Used

Multivariate Bayesian Statistics: Models for Source Separation and Signal Unmixing,Used

In Stock
SKU: SONG1584883189
Brand: Chapman and Hall/CRC
Sale price$22.14 Regular price$31.63
Save $9.49
Quantity
Add to wishlist
Add to compare

Processing time: 1-3 days

US Orders Ships in: 3-5 days

International Orders Ships in: 8-12 days

Return Policy: 15-days return on defective items

Payment Option
Payment Methods

Help

If you have any questions, you are always welcome to contact us. We'll get back to you as soon as possible, withing 24 hours on weekdays.

Customer service

All questions about your order, return and delivery must be sent to our customer service team by e-mail at yourstore@yourdomain.com

Sale & Press

If you are interested in selling our products, need more information about our brand or wish to make a collaboration, please contact us at press@yourdomain.com

Of the two primary approaches to the classic source separation problem, only one does not impose potentially unreasonable model and likelihood constraints: the Bayesian statistical approach. Bayesian methods incorporate the available information regarding the model parameters and not only allow estimation of the sources and mixing coefficients, but also allow inferences to be drawn from them.Multivariate Bayesian Statistics: Models for Source Separation and Signal Unmixing offers a thorough, selfcontained treatment of the source separation problem. After an introduction to the problem using the 'cocktailparty' analogy, Part I provides the statistical background needed for the Bayesian source separation model. Part II considers the instantaneous constant mixing models, where the observed vectors and unobserved sources are independent over time but allowed to be dependent within each vector. Part III details more general models in which sources can be delayed, mixing coefficients can change over time, and observation and source vectors can be correlated over time. For each model discussed, the author gives two distinct ways to estimate the parameters.Realworld source separation problems, encountered in disciplines from engineering and computer science to economics and image processing, are more difficult than they appear. This book furnishes the fundamental statistical material and uptodate research results that enable readers to understand and apply Bayesian methods to help solve the many 'cocktail party' problems they may confront in practice.

⚠️ WARNING (California Proposition 65):

This product may contain chemicals known to the State of California to cause cancer, birth defects, or other reproductive harm.

For more information, please visit www.P65Warnings.ca.gov.

Recently Viewed